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Abstract The special features of photonic crystal fibres
(PCFs) are achieved by their air hole structures. PCF
structure is determined and formed by its origin preform
design and drawing process. Therefore, structure formation
dynamics in drawing PCF is important for the fabrication
of PCF achieving desirable structure and thus the intended
feature. This paper will investigate structure formation
dynamics of PCF drawing in relation to key parameters
and conditions, such as hole dimension, temperature,
pressure, etc.

Keywords photonic crystal fibre (PCF), structure forma-
tion, hole dimension, hole position, hole shift

1 Introduction

Photonic crystal fibres (PCFs) have attracted lots of interest
as they could provide special features that conventional
fibres cannot achieve [1], such as near-endlessly single
mode [2], strong optical nonlinear effects [3] and high-
birefringence [4]. Therefore, they are widely used in (but
not limited to) fibre lasers [5–7], fibre sensors [8,9], and
nonlinear devices [3,10].
PCF features are mainly determined by the geometry

structure of the air holes such as hole dimension, hole
shape and hole position [2]. However, hole deformation
may happen in the drawing process due to the viscosity and
surface tension of the material. Therefore, it is essential to

understand the structure formation dynamics in drawing
PCF to achieve the original hole structure in the preform by
accurate controlling drawing conditions like furnace
temperature Td, drawing pressure Pd, feeding rate Vf, and
drawing rate Vd.
To understand the structure formation in drawing

process, much theoretical analysis work has been done.
The drawing process modeling of PCF [11,12] related to
hole collapse was setup in Ref. [13]. Fitt et al. [14,15]
carried out the single capillary drawing approach under
isothermal condition, and the stability of drawing capil-
laries has been reported in Refs. [16,17]. The control of
hole expansion was theoretically studied [18] and the
method of predicting hole dimension disregarding viscos-
ity was provided [19]. Furthermore, in the drawing
process, the transverse radiative heat transfer inside the
silica preform was numerically analyzed [12,20,21]. In
addition to these theoretical studies, several experiments
were carried out to explore proper PCF drawing para-
meters. For example, the relationships of the hole
dimension and the spacing pitch between pressure [22],
temperature, feeding rate, feeding time, and capillary wall
thickness were reported [23–26]. However, directly taking
advantage of these results is not practical due to the
structural and design differences in drawing facilities.
Thus, in order to customize the PCF drawing in our own
draw tower, the relationship between the structure forma-
tion dynamics and pressure Pd at different Td was primarily
studied for the normal PCF and the high-birefringence PCF
[27,28]. Following the previous work, this paper will
provide a further analysis of the structure formation
dynamics including hole position and hole centre shift in
the drawing process.
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2 PCF structure and structure parameters

2.1 Basic structure parameters

The cross section images of the PCF and its preform are
shown in Figs. 1(a) and 1(c) and the structural parameters
of the PCF and its preform are described in Figs. 1(b) and 1
(d). The hole diameters of fibre and preform are defined as
2rh,f and 2rh,p. The radii of fibre and preform are denoted as
ro,f and ro,p. rf is the distance between the centre of the fibre
and that of the hole, and rp is the distance between the
centre of the preform and that of the hole. The hexagonal
rings from inner to outer are named as Ring 1, Ring 2, Ring
3, and Ring 4, respectively. Since some holes in Ring 4 are
fully collapsed, only the holes in Ring 1, 2 and 3 will be
considered and described in this work. Three red circled
holes marked as H1, H2 and H3 at Ring 1, 2 and 3 in Figs. 1
(b) and 1(d) are typically selected to represent the structure
formation of the holes in each ring.

2.2 Scale factor of hole-outer diameter ratio of fibre to
preform R

For describing the collapse degree of the air hole, a scale

factor R is defined as

R ¼ 2rh,f=ð2ro,f Þ
2rh,p=ð2ro,pÞ

¼ rh,f=ro,f
rh,p=ð2ro,pÞ

, (1)

where numerator term represents the hole-outer diameter
ratio of fibre, and denominator term is the hole-outer
diameter ratio of preform. According to the definition in
Eq. (1), the change of air holes in PCF has the following
four cases:
when R = 0, holes are fully collapsed and rh,f = 0;
when R< 1, holes are partially collapsed;
when R> 1, holes are expanded;
when R = 1, holes keeps the same ratio as those in the

preform without any collapse or expansion (internal air
pressure is balanced with the surface tension and drawing
shear force). Here, Pd is defined as the optimal pressure,
Po.

2.3 Relative position of the hole in fibre Rf

To study the relationship between the structure formation
and hole position, the relative position of the hole in fibre
Rf is defined in Eq. (2):

Fig. 1 Cross section images of a fabricated PCF (a) and its preform (c). The basic structural parameters are labeled in (b) for the PCF and (d)
for the preform. The colors of (b) and (d) are calibrated for clearer views
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Rf ¼
rf
ro,f

: (2)

2.4 Relative position of the hole in preform Rp

Similarly, the relative position of the hole in preform (Rp) is
defined in Eq. (3):

Rp ¼
rp
ro,p

: (3)

3 PCF fabrication results and discussion

The PCF preform used was assembled by stacking a series
of capillaries forming the hexagon shape with four rings
and jacketing these capillaries with a silica tube. The inner
diameter Dinner and outer diameter Dtube of the jacket tube
are 18.93 and 24.97 mm, and the ratio of outer to inner
diameter of the capillary is 1.32. The space between the
capillaries and jacket tube was filled with solid rods for two
reasons: 1) stabilizing the stacked hexagon PCF structure;
2) avoiding an excessive collapse of the holes at Ring 4
caused by high temperature at outer layer in the drawing
process [1]. Then the stacked preform was fused on a lathe
to relax the tolerance in drawing process by removing the
interstitial area so that only lattice structure was concerned.
The outer diameter of the fused preform Dpreform is 21.5
mm which means 25.8% of preform was collapsed (the
area of cross section). Finally, the fused preform was
drawn into fibres with furnace temperature Td = 1860°C
and Td = 1870°C, drawing pressure Pd = 2.8–18.5 mbar1),

feeding rate Vf = 0.5 mm/min, and drawing rate Vd = 15
m/min.

3.1 Scale factor R vs. drawing pressure Pd at different
furnace temperature Td

In our previous work [27], the relationship between
drawing pressure Pd and scale factor R was discussed
according to the cross section image scanned by the
electron microscope shown in Figs. 2(a) and 2(b). Seen
from Fig. 2(a), when Pd = 2.8 mbar, the R of H1, H2 and H3

are measured to be 0.43, 0.36 and 0.29 at Td = 1860°C.
These less than one R values indicate the collapse of the
holes. With the rise of Pd to 9 mbar, the R of each hole
grows close to 1, which means a balanced pressure is
nearly provided at the boundary between the air hole and
the glass. Finally, when Pd is changed up to 12 mbar, the R
of each hole surpasses 1. In this case, the holes are
supposed to be expanded according to the definition of R.
Therefore, the rule of R vs. Pd can be concluded as: 1)
when Pd is set in a low region, the scale factor R moves
towards zero due to insufficient drawing pressure to resist
the collapse tension; 2) when increasing the Pd, the high
drawing pressure will overcome the collapse tension and
blow up the hole, resulting in the increase of R.
In addition, it has been found that the optimal pressure

Po increases with the radial distance from the centre, which
is H1 (8.5 mbar)<H2 (9.1 mbar)<H3 (10.2 mbar).
Normally lower viscosity under higher Td leads to more
collapse. As a result of a thermal gradient, a hole in the
outer ring has a significantly higher temperature environ-
ment and a lower viscosity than the one in the inner ring.
So that, as the experimental results show, a hole in the outer

1) 1 mbar = 100 Pa

Fig. 2 Dependences of the scale factor R on the drawing pressure Pd for holes H1, H2 and H3. The results are shown for two furnace
temperatures: (a) 1860°C and (b) 1870°C. Cross-section images of the preform and four PCFs with different drawing conditions are
illustrated. The green dash lines represent R = 1. The optimal pressures of holes H1, H2 and H3 are marked as Po1, Po2, Po3
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ring requires considerably increased Pd to maintain the
structure. Besides, a strong temperature dependence of Po

is confirmed by comparing the optimal pressure Po in Figs.
2(a) and 2(b): when the furnace temperature Td increased
by 10°C, the Po of each hole increases by the ratio of 1.77–
1.89 [27].

3.2 Relative position of hole in fibre Rf vs. drawing pressure
Pd at different furnace temperature Td

The optimum PCF drawing is to achieve the targeted
structure directly scaled down from its preform. However,
the material migration always exists in PCF drawing due to
the un-balance between the drawing pressure and the
collapse tension. It will not only change the hole
dimension, but also the position of hole in PCF regarding
with that in the preform. The variation of the position of
hole in PCF regarding with that in preform means that the
movement of a hole in PCF is not in the proposition to the
position of the hole in preform. In order to have a better
control of the position of the holes in the PCF drawing
process, the relative position of hole in fibre (Rf) is
introduced as Eq. (2) and its dependences on the drawing
pressure and furnace temperature is further studied.
In Fig. 3, the Rf of three tracked holes as a function of the

drawing pressure Pd of 2.8–18.5 mbar at different furnace
temperature Td are plotted. The Rf of all three holes is
almost increased (i.e., moving away from the center) with
the increase of Pd. The H3 hole has the most significant
movement with the Pd because it has the largest slope m of
Rf to Pd. Compared with the relative position of hole in
preform Rp (indicated as orange dash lines), the movement
of the hole in the inner layer is less. Such phenomena might

be attributed to two reasons: 1) the effect of hole H3 located
in the outer ring includes the additive effect from the inner
rings; 2) the holes in the outer ring have less restraint than
those in the inner rings. For the latter reason, the hole H1

needs to push hole H2 and H3 if it tends to move outward,
meanwhile, it is restricted by the high material viscosity in
the centre of the PCF when it is going to move towards the
centre of the fibre.
When the Pd is increased to 9 mbar at Td = 1860°C, an

optimal condition is obtained for the hole H2, because the
Rf of hole H2 is 0.338, which is only 0.005 larger than the
relative position in preform Rp. In the meantime, the
difference between the Rf (0.169) and the Rp (0.167) of H1

is very small at this drawing condition as well. When the
temperature is increased by 10°C, the Rf is found to be
lower than that at 1860°C with the same Pd = 12 mbar.
Considering that the optical property in PCF is largely
decided by the inner layers [29], the optimal drawing
condition at 1870°C is suggested to be 15 mbar according
to the Rf of H1 and H2. Hence, drawing conditions of 9
mbar at 1860°C and 15 mbar at 1870°C are favorable
settings for maintaining the hole positions in preform after
PCF drawing.

3.3 Scale factor R vs. relative position of hole in fibre Rf

As discussed above, both of the scale factor R and relative
position of hole in fibre Rf can be significantly affected by
the drawing pressure and furnace temperature. Thereby, it
is meaningful to investigate how these two parameters
react to the drawing condition correspondingly and search
for a drawing condition to optimize R and Rf simulta-
neously. In Fig. 4, the relationship of R and Rf calculated
for H1, H2 and H3 are plotted with different drawing
conditions.
Under the same drawing pressure Pd and furnace

temperature Td, the R drops with increasing Rf, which
means the hole at inner layer has less collapse (0<R< 1)
or more expansion (R> 1) than that at outer layer. Such
correlation between the R and Rf holds for any investigated
drawing condition shown in Figs. 4(a) and 4(b). Knowing
that the optimal R is 1 and the optimal Rf equals to the
relative position of hole in the preform Rp, the optimal R
and Rf are plotted by dash lines accordingly. Thus, it is easy
to understand that three intersections are the optimal points
for three holes in Figs. 4(a) and 4(b). Therefore, an optimal
drawing condition is Pd = 9 mbar and Td = 1860°C, where
all R values of three holes have the smallest difference with
each other, and the Rf of H1 and H2 locate close to their best
position.
In an ideal situation, the R and Rf should fulfill all

optimal conditions. However, the scale factor R has more
or less dependence on the Rf, indicating that it is difficult to
make all of the R in each ring equal to one at the same time.
Hence, one strategy to solve this problem is to reduce the
dependence of R on Rf. In Fig. 5, the slope s of the R to the

Fig. 3 Dependences of relative position of the hole in PCF (Rf)
upon the drawing pressure Pd for holes H1, H2 and H3 at different
temperature: 1860°C (left part to the dotted line) and 1870°C (right
part to the dotted line). The orange dash lines represent the relative
position of holes in the preform (Rp). m is the slope of Rf to Pd
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Rf with same drawing condition is calculated to represent
the degree of the dependence of the R on the Rf.At both Td,
slope s tends to decrease with increasing Pd and is likely to
converge to some range (0.3–0.35 at 1860°C). This result
implies that the strength of the dependence of R on Rf can
be reduced by increasing the Pd. In other words, the holes
at each ring will have a similar deformation behavior under
high drawing pressure. Moreover, by decreasing the
temperature from 1870°C to 1860°C, the s drops
significantly from 0.82 to 0.35 with drawing pressure of
12 mbar showing a great dependence of s on the furnace
temperature. Based on these analyses, one can have a low
R dependence on Rf by carefully lowering the furnace
temperature and obtain an optimal R by adjusting the Pd

afterward. However, attention on the corresponding
variation of Rf on the Pd needs to be paid as well.

4 Conclusion

Optical features of PCFs are determined by the air hole
structure, formed by its preform design and the following
control of the conditions in PCF drawing process. Two
new structure parameters-scale factor R and relative
position of hole in fibre Rf have been introduced to assess
the structure formation compared with its preform. The
relationships between scale factor R, relative position of
hole in fibre Rf and drawing conditions, including drawing
pressure Pd and furnace temperature Td, have further been
investigated by a series of PCFs drawn under different
drawing conditions. To maintain the PCF structure, the
optimal pressure is required, which shows a strong
temperature dependence, while to maintain the hole
position of PCF as the preform, two sets of the drawing
conditions are favorable. This investigation predicts that
there exists an optimal condition to achieve perfect PCF
structure without hole collapse/expansion as well as hole
shift as the design.
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